Age, Biography and Wiki
Who is it? | Physicist |
Birth Day | December 11, 1882 |
Birth Place | Wrocław, German |
Age | 137 YEARS OLD |
Died On | 5 January 1970(1970-01-05) (aged 87)\nGöttingen, West Germany (now Germany) |
Birth Sign | Capricorn |
Resting place | Stadtfriedhof Göttingen Lower Saxony, Germany |
Residence | Göttingen, West Germany |
Citizenship | German, British |
Alma mater | University of Göttingen |
Known for | Born–Haber cycle Born rigidity Born coordinates Born approximation Born series Born probability Born–Infeld theory Born–Oppenheimer approximation Born rule Born–Landé equation Born–Huang approximation Born–von Karman boundary condition Born equation |
Spouse(s) | Hedwig (Hedi) Ehrenberg (1891–1972) (m. 1913–1970; his death) |
Children | 2 daughters, 1 son eldest (Irene, 1914–2003) was mother of Olivia Newton-John |
Awards | Nobel Prize in Physics (1954) Hughes Medal (1950) Max Planck Medal (1948) Fellow of the Royal Society (1939) |
Fields | Theoretical physics |
Institutions | University of Frankfurt am Main University of Göttingen University of Edinburgh University of Cambridge |
Thesis | Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum unter verschiedenen Grenzbedingungen ("Investigations on the stability of the elastic line in plane and space under different boundary conditions") (1906) |
Doctoral advisor | Carl Runge |
Other academic advisors | Woldemar Voigt Karl Schwarzschild Joseph Larmor J. J. Thomson |
Doctoral students | Victor Frederick Weisskopf J. Robert Oppenheimer Lothar Wolfgang Nordheim Max Delbrück Walter Elsasser Friedrich Hund Pascual Jordan Maria Goeppert-Mayer Herbert S. Green Cheng Kaijia Siegfried Flügge Edgar Krahn Maurice Pryce Bertha Swirles Peng Huanwu |
Other notable students | Enrico Fermi Emil Wolf |
Net worth: $6 Million (2024)
Max Born, renowned German physicist, is projected to have a net worth of $6 million in 2024. Born gained widespread recognition for his groundbreaking contributions to the field of quantum mechanics, particularly for his statistical interpretation of the wave function. Throughout his career, Born's extraordinary intellectual prowess and dedication to scientific research propelled him to great success. As a result, his net worth continues to grow, testament to his significant impact on the world of physics.
Famous Quotes:
Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the 'old one'. I, at any rate, am convinced that He is not playing at dice.
Biography/Timeline
Max Born was born on 11 December 1882 in Breslau, which at the time of Born's birth was part of the Prussian Province of Silesia in the German Empire, to a family of Jewish descent. He was one of two children born to Gustav Born, an Anatomist and embryologist, who was a professor of embryology at the University of Breslau, and his wife Margarethe (Gretchen) née Kauffmann, from a Silesian family of industrialists. She died when Max was four years old, on 29 August 1886. Max had a sister, Käthe, who was born in 1884, and a half-brother, Wolfgang, from his father's second marriage, to Bertha Lipstein. Wolfgang later became Professor of Art History at the City College of New York.
Born's wife Hedwig (Hedi) Martha Ehrenberg (1891–1972) was a daughter of the jurist Victor Ehrenberg and Elise von Jhering (a daughter of the jurist Rudolf von Jhering). Born was survived by his wife Hedi and their children Irene, Gritli and Gustav. Singer Olivia Newton-John is a daughter of Irene (1914-2003). The actor Max Born (Fellini Satyricon) is his grandson. His great-grandchildren include Songwriter Brett Goldsmith, singer Tottie Goldsmith, racing car driver Emerson Newton-John, and singer Chloe Rose Lattanzi.
Initially educated at the König-Wilhelm-Gymnasium in Breslau, Born entered the University of Breslau in 1901. The German university system allowed students to move easily from one university to another, so he spent summer semesters at Heidelberg University in 1902 and the University of Zurich in 1903. Fellow students at Breslau, Otto Toeplitz and Ernst Hellinger, told Born about the University of Göttingen, and Born went there in April 1904. At Göttingen he found three renowned mathematicians: Felix Klein, David Hilbert and Hermann Minkowski. Very soon after his arrival, Born formed close ties to the latter two men. From the first class he took with Hilbert, Hilbert identified Born as having exceptional abilities and selected him as the lecture scribe, whose function was to write up the class notes for the students' mathematics reading room at the University of Göttingen. Being class scribe put Born into regular, invaluable contact with Hilbert, during which time Hilbert's intellectual largesse benefited Born's fertile mind. Hilbert became Born's mentor after selecting him to be the first to hold the unpaid, semi-official position of assistant. Born's introduction to Minkowski came through Born's stepmother, Bertha, as she knew Minkowski from dancing classes in Königsberg. The introduction netted Born invitations to the Minkowski household for Sunday dinners. In addition, while performing his duties as scribe and assistant, Born often saw Minkowski at Hilbert's house.
Born entered the University of Göttingen in 1904, where he found the three renowned mathematicians Felix Klein, David Hilbert, and Hermann Minkowski. He wrote his Ph.D. thesis on the subject of "Stability of Elastica in a Plane and Space", winning the University's Philosophy Faculty Prize. In 1905, he began researching special relativity with Minkowski, and subsequently wrote his habilitation thesis on the Thomson model of the atom. A chance meeting with Fritz Haber in Berlin in 1918 led to discussion of the manner in which an ionic compound is formed when a metal reacts with a halogen, which is today known as the Born–Haber cycle.
Klein had the power to make or break academic careers, so Born felt compelled to atone by submitting an entry for the prize. Because Klein refused to supervise him, Born arranged for Carl Runge to be his supervisor. Woldemar Voigt and Karl Schwarzschild became his other examiners. Starting from his paper, Born developed the equations for the stability conditions. As he became more interested in the topic, he had an apparatus constructed that could test his predictions experimentally. On 13 June 1906, the rector announced that Born had won the prize. A month later, he passed his oral examination and was awarded his PhD in mathematics magna cum laude.
On graduation, Born was obliged to perform his military Service, which he had deferred while a student. He found himself drafted into the German army, and posted to the 2nd Guards Dragoons "Empress Alexandra of Russia", which was stationed in Berlin. His Service was brief, as he was discharged early after an asthma attack in January 1907. He then travelled to England, where he was admitted to Gonville and Caius College, Cambridge, and studied physics for six months at the Cavendish Laboratory under J. J. Thomson, George Searle and Joseph Larmor. After Born returned to Germany, the Army re-inducted him, and he served with the elite 1st (Silesian) Life Cuirassiers "Great Elector" until he was again medically discharged after just six weeks' Service. He then returned to Breslau, where he worked under the supervision of Otto Lummer and Ernst Pringsheim, hoping to do his habilitation in physics. A minor accident involving Born's black body experiment, a ruptured cooling water hose, and a flooded laboratory, led to Lummer telling him that he would never become a Physicist.
In 1905, Albert Einstein published his paper On the Electrodynamics of Moving Bodies about special relativity. Born was intrigued, and began researching the subject. He was devastated to discover that Minkowski was also researching special relativity along the same lines, but when he wrote to Minkowski about his results, Minkowski asked him to return to Göttingen and do his habilitation there. Born accepted. Toeplitz helped Born brush up on his matrix algebra so he could work with the four-dimensional Minkowski space matrices used in the latter's project to reconcile relativity with electrodynamics. Born and Minkowski got along well, and their work made good progress, but Minkowski died suddenly of appendicitis on 12 January 1909. The mathematics students had Born speak on their behalf at the funeral.
Up until this time, matrices were seldom used by physicists; they were considered to belong to the realm of pure mathematics. Gustav Mie had used them in a paper on electrodynamics in 1912, and Born had used them in his work on the lattices theory of crystals in 1921. While matrices were used in these cases, the algebra of matrices with their multiplication did not enter the picture as they did in the matrix formulation of quantum mechanics. With the help of his assistant and former student Pascual Jordan, Born began immediately to make a transcription and extension, and they submitted their results for publication; the paper was received for publication just 60 days after Heisenberg's paper. A follow-on paper was submitted for publication before the end of the year by all three authors. The result was a surprising formulation:
By the end of 1913, Born had published 27 papers, including important work on relativity and the dynamics of crystal lattices (3 with Theodore von Karman), which became a book. In 1914, received a letter from Max Planck explaining that a new professor extraordinarius chair of theoretical physics had been created at the University of Berlin. The chair had been offered to Max von Laue, but he had turned it down. Born accepted. The First World War was now raging. Soon after arriving in Berlin in 1915, he enlisted in an Army signals unit. In October, he joined the Artillerie-Prüfungs-Kommission, the Army's Berlin-based artillery research and development organisation, under Rudolf Ladenburg, who had established a special unit dedicated to the new Technology of sound ranging. In Berlin, Born formed a lifelong friendship with Einstein, who became a frequent visitor to Born's home. Within days of the armistice in November 1918, Planck had the Army release Born. A chance meeting with Fritz Haber that month led to discussion of the manner in which an ionic compound is formed when a metal reacts with a halogen, which is today known as the Born–Haber cycle.
Even before Born had taken up the chair in Berlin, von Laue had changed his mind, and decided that he wanted it after all. He arranged with Born and the faculties concerned for them to exchange jobs. In April 1919, Born became professor ordinarius and Director of the Institute of Theoretical Physics on the science faculty at the University of Frankfurt am Main. While there, he was approached by the University of Göttingen, which was looking for a replacement for Peter Debye as Director of the Physical Institute. "Theoretical physics," Einstein advised him, "will flourish wherever you happen to be; there is no other Born to be found in Germany today." In negotiating for the position with the education ministry, Born arranged for another chair, of experimental physics, at Göttingen for his long-time friend and colleague James Franck.
For the 12 years Born and Franck were at Göttingen, from 1921 to 1933, Born had a collaborator with shared views on basic scientific concepts — a benefit for teaching and research. Born's collaborative approach with experimental physicists was similar to that of Arnold Sommerfeld at the University of Munich, who was ordinarius professor of theoretical physics and Director of the Institute of Theoretical Physics — also a prime mover in the development of quantum theory. Born and Sommerfeld collaborated with experimental physicists to test and advance their theories. In 1922, when lecturing in the United States at the University of Wisconsin–Madison, Sommerfeld sent his student Werner Heisenberg to be Born's assistant. Heisenberg returned to Göttingen in 1923, where he completed his habilitation under Born in 1924, and became a privatdozent at Göttingen.
In 1925, Born and Heisenberg formulated the matrix mechanics representation of quantum mechanics. On 9 July, Heisenberg gave Born a paper entitled Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen ("Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations") to review, and submit for publication. In the paper, Heisenberg formulated quantum theory, avoiding the concrete, but unobservable, representations of electron orbits by using parameters such as transition probabilities for quantum jumps, which necessitated using two indexes corresponding to the initial and final states. When Born read the paper, he recognized the formulation as one which could be transcribed and extended to the systematic language of matrices, which he had learned from his study under Jakob Rosanes at Breslau University.
In a letter to Born on 4 December 1926, Einstein made his famous remark regarding quantum mechanics:
Those who received their Ph.D. degrees under Born at Göttingen included Max Delbrück, Siegfried Flügge, Friedrich Hund, Pascual Jordan, Maria Goeppert-Mayer, Lothar Wolfgang Nordheim, Robert Oppenheimer, and Victor Weisskopf. Born's assistants at the University of Göttingen's Institute for Theoretical Physics included Enrico Fermi, Werner Heisenberg, Gerhard Herzberg, Friedrich Hund, Pascual Jordan, Wolfgang Pauli, Léon Rosenfeld, Edward Teller, and Eugene Wigner. Walter Heitler became an assistant to Born in 1928, and completed his habilitation under him in 1929. Born not only recognised talent to work with him, but he "let his superstars stretch past him; to those less gifted, he patiently handed out respectable but doable assignments." Delbrück, and Goeppert-Mayer went on to win Nobel Prizes.
In January 1933, the Nazi Party came to power in Germany. In May, Born became one of six Jewish professors at Göttingen who were suspended with pay; Franck had already resigned. In twelve years they had built Göttingen into one of the world's foremost centres for physics. Born began looking for a new job, writing to Maria Göppert-Mayer at Johns Hopkins University and Rudi Ladenburg at Princeton University. He accepted an offer from St John's College, Cambridge. At Cambridge, he wrote a popular science book, The Restless Universe, and a textbook, Atomic Physics, that soon became a standard text, going through seven editions. His family soon settled into life in England, with his daughters Irene and Gritli becoming engaged to Welshman Brinley (Bryn) Newton-John (Olivia Newton-John's parents; Born is Olivia's grandfather and Irene is her mother) and Englishman Maurice Pryce respectively.
Born's position at Cambridge was only a temporary one, and his tenure at Göttingen was terminated in May 1935. He therefore accepted an offer from C. V. Raman to go to Bangalore in 1935. Born considered taking a permanent position there, but the Indian Institute of Science did not create an additional chair for him. In November 1935, the Born family had their German citizenship revoked, rendering them stateless. A few weeks later Göttingen cancelled Born's doctorate. Born considered an offer from Pyotr Kapitsa in Moscow, and started taking Russian lessons from Rudolf Peierls's Russian-born wife Genia. But then Charles Galton Darwin asked Born if he would consider becoming his successor as Tait Professor of Natural Philosophy at the University of Edinburgh, an offer that Born promptly accepted, assuming the chair in October 1936.
In Edinburgh, Born promoted the teaching of mathematical physics. He had two German assistants, E. Walter Kellermann and Klaus Fuchs, and together they continued to investigate the mysterious behaviour of electrons. Born became a Fellow of the Royal Society of Edinburgh in 1937, and of the Royal Society of London in March 1939. During 1939, he got as many of his remaining friends and relatives still in Germany as he could out of the country, including his sister Käthe, in-laws Kurt and Marga, and the daughters of his friend Heinrich Rausch von Traubenberg. Hedi ran a domestic bureau, placing young Jewish women in jobs. Born received his certificate of naturalisation as a British subject on 31 August 1939, one day before the Second World War broke out in Europe.
Born remained at Edinburgh until he reached the retirement age of 70 in 1952. He retired to Bad Pyrmont, in West Germany, in 1954. In October, he received word that he was being awarded the Nobel Prize. His fellow physicists had never stopped nominating him. Franck and Fermi had nominated him in 1947 and 1948 for his work on crystal lattices, and over the years, he had also been nominated for his work on solid state physics, quantum mechanics and other topics. In 1954, he received the prize for "fundamental research in Quantum Mechanics, especially in the statistical interpretation of the wave function" — something that he had worked on alone. In his Nobel lecture he reflected on the philosophical implications of his work:
In retirement, he continued scientific work, and produced new editions of his books. In 1955 he became one of signatories to the Russell-Einstein Manifesto. He died at age 87 in hospital in Göttingen on 5 January 1970, and is buried in the Stadtfriedhof there, in the same cemetery as Walther Nernst, Wilhelm Weber, Max von Laue, Otto Hahn, Max Planck, and David Hilbert.
For a full list of his published papers, see HistCite. For his published works, see Published Works – Berlin-Brandenburgische Akademie der Wissenschaften Akademiebibliothek.